PINE LIBRARY
Updated

FunctionSMCMC

2 281
Library "FunctionSMCMC"
Methods to implement Markov Chain Monte Carlo Simulation (MCMC)

markov_chain(weights, actions, target_path, position, last_value) a basic implementation of the markov chain algorithm
  Parameters:
    weights: float array, weights of the Markov Chain.
    actions: float array, actions of the Markov Chain.
    target_path: float array, target path array.
    position: int, index of the path.
    last_value: float, base value to increment.
  Returns: void, updates target array

mcmc(weights, actions, start_value, n_iterations) uses a monte carlo algorithm to simulate a markov chain at each step.
  Parameters:
    weights: float array, weights of the Markov Chain.
    actions: float array, actions of the Markov Chain.
    start_value: float, base value to start simulation.
    n_iterations: integer, number of iterations to run.
  Returns: float array with path.
Release Notes
v2
outsourced the probability distribution sample selection to a external library:
-
FunctionProbabilityDistributionSampling

Disclaimer

The information and publications are not meant to be, and do not constitute, financial, investment, trading, or other types of advice or recommendations supplied or endorsed by TradingView. Read more in the Terms of Use.